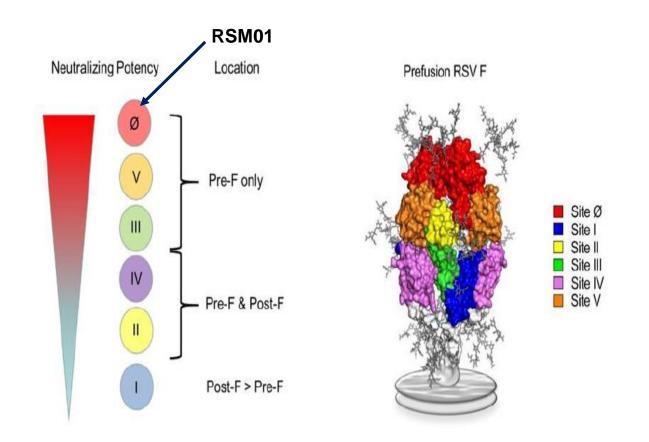
BILL & MELINDA GATES MEDICAL RESEARCH INSTITUTE

Implementing a patient-centric sampling strategy in the global clinical development of RSM01 (Anti-RSV mAb)

Micha Levi, Ph.D., Clinical Pharmacology and Pharmacometrics Leader Joleen T White, Ph.D., Head of Bioassay Development and Operations

July 2 , 2023

© 2022, Bill & Melinda Gates Medical Research Institute. All rights reserved.



Respiratory Syncytial Virus (RSV) is a major global health concern, primarily affecting young children

- In 2015, an estimated 1.4 million hospital admissions were due to RSV
- There were approximately 273,000 in-hospital deaths among infants less than 6 months old, and more than 99% of these deaths occurred in developing countries [Shi 2017]*
- There is an urgent need for affordable, safe, and effective prevention against RSV, especially in low- and middle-income countries (LMICs)
- The goal of the RSM01 development program is to develop a safe and effective mAb to prevent RSV disease in infants, with a focus on accessibility in LMIC

RSM01: A long-acting, potent neutralizing RSV mAB

- Fully human IgG1 mAb
- Targets antigenic site zero of the prefusion F protein (a region considered to be highly neutralization sensitive).
- Acts by binding to and inhibiting the pre-fusion form of RSV glycoprotein F on the surface of the virus, blocking a critical step in the membrane fusion process.
- YTE mutation in Fc region increases serum $t_{1/2}$
- Potential for a single dose for RSV season coverage

Benefits for using mirosampling in the RSM01 global development program*

Ethical Benefits:

- Obtaining samples from infants
- Collection of samples in a closer timeframe to a clinical event
- Freeing-up blood volume to collect additional samples

Improved Patient Experience:

- Sample collection in settings more convenient to the patient
- Limiting disruption to normal life for clinical study subjects
- Less invasive than venipuncture

*Spooner, 2019, DOI: 10.4155/bio-2019-0041

Direct Cost Savings:

- Ambient Temperature Sample Shipments:
- Reduced Shipping Costs

Indirect Cost Savings:

- Less Clinical Staff Needed for Blood Sample Collection
- Improved Clinical Trial Recruitment and Retention

Process Simplicity:

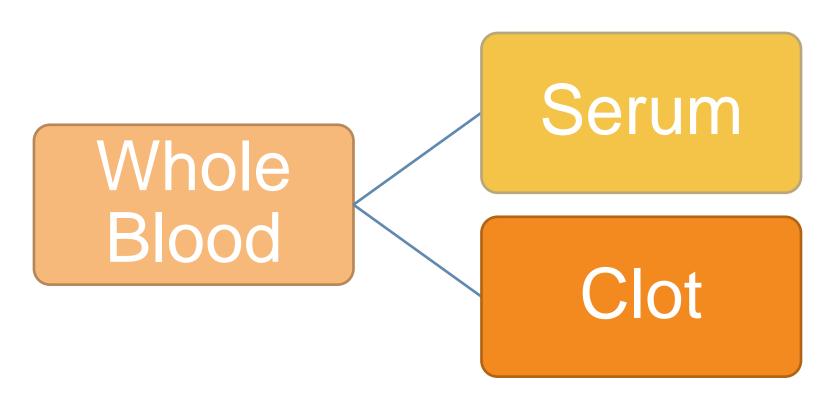
- Minimized On-Site Processing
- This simplification reduces labor, resources, and potential error sources.

Patient-Centric Blood Collection

Capillary blood rather than venous

- Capillary blood suitable for lower volume collection
 - Heel prick standard for infants
 - Options to collect liquid to process to plasma/serum
 - Options to collect whole blood
- Potential to use dried blood for all PK in program

BD Microtainer



Mitra

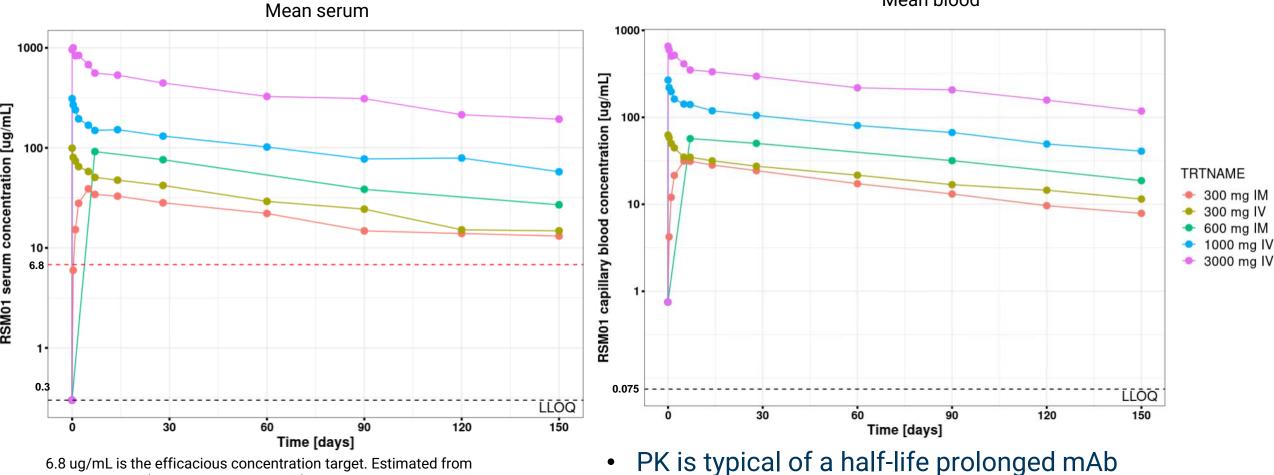
RSM01 PK Implementation (VAMS®)

- Support microsampling as the primary matrix for RSM01 pharmacokinetics in clinical development program
- Analytical Method Development
 - / Use volumetric absorptive microsampling (VAMS) with plastic substrate (20 μ L)
 - / 100% recovery versus whole blood spike
 - Ongoing stability studies, but at least 6 months at room temperature (22°C)
- Clinical replication study within RSM01-101 to provide bridging data
 - [/] Enable modeling to include nonclinical and nirsevimab serum data
 - Fully matched profiles for venous serum vs. capillary blood VAMS
 - Far exceeds the requirements for a bridging study
 - Enables comparison of PK parameters in addition to raw drug concentration from samples

Monoclonal Antibody Partitions to Serum

- Serum concentrations will be higher than whole blood
 - Hematocrit can
 approximate the partition
 factor
- Calculate conversion to include serum data sets in modeling
 - Other anti-RSV monoclonals
 - Nonclinical efficacy models

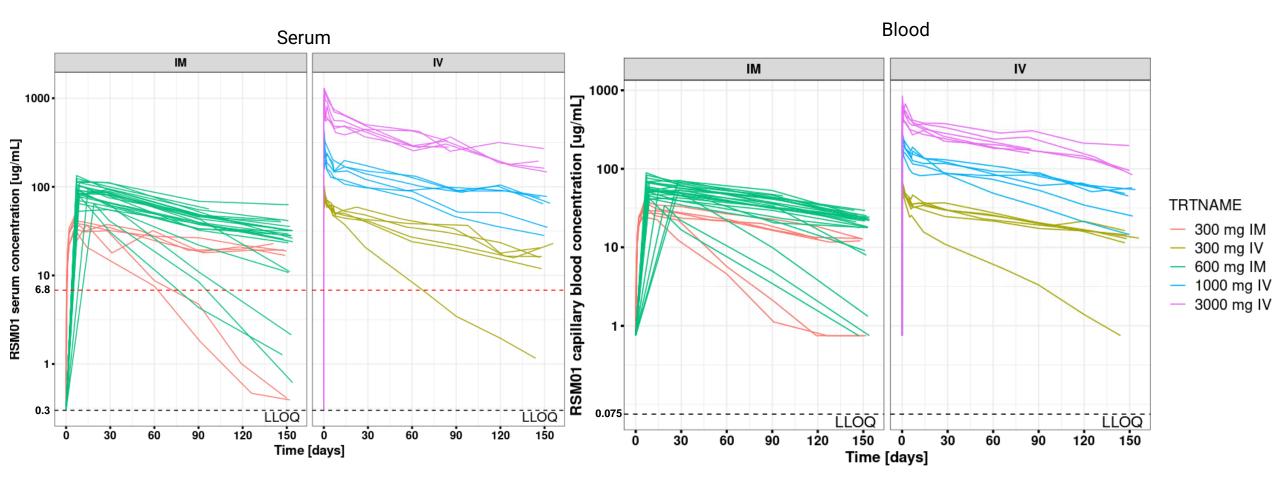
Gates MRI-RSM01-101 Study Design


Phase 1 Randomized, Double-blind, Placebo-Controlled Study to Evaluate the Safety, Tolerability, and PK of Single Ascending Doses of RSM01in Healthy Adults

Dose Escalation Phase		Dose Expansion
<u>Cohort 1</u> 300 mg IV RSM01, n = 6; PBO, n = 1	<u>Cohort 2</u> 300 mg IM RSM01, n = 6; PBO, n = 1	<u>Cohort 5</u> 600 mg IM RSM01, n = 24; PBO, n = 4
<u>Cohort 3</u> 1000 mg IV RSM01, n = 6; PBO, n = 1	<u>Cohort 4</u> 3000 mg IV RSM01, n = 6; PBO, n = 1	

Gates MRI-RSM01-101: Mean RSM01 concentrations in serum and capillary blood

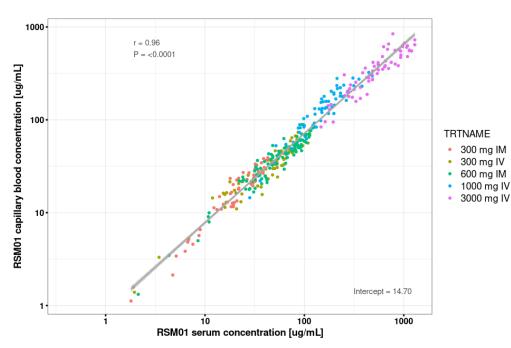
Similar mean concertation time profile in the serum and blood


Mean blood

cotton rat EC₉₀ (RSM01 and nirsevimab) and nirsevimab clinical data

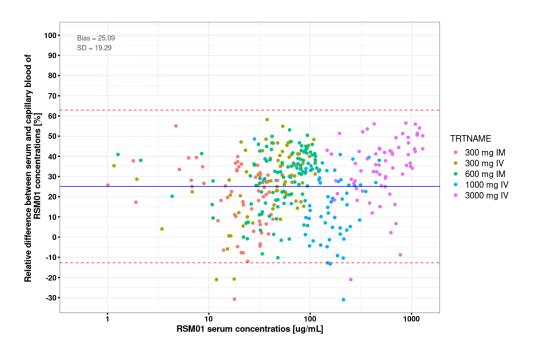
It is dose-linear across doses tested •

Gates MRI-RSM01-101: Individual RSM01 concentrations are similar in serum and capillary blood



6.8 ug/mL is the efficacious concentration target. Estimated from cotton rat EC_{90} (RSM01 and nirsevimab) and nirsevimab clinical data

© 2022, Bill & Melinda Gates Medical Research Institute. All rights reserved.


 There are few outliers with apparent higher elimination rates (consistent across two mediums)

Gates MRI-RSM01-101: There is a high correlation between serum and blood concentrations

r = correlation coefficient, P = p-value, Intercept = Intercept of the regression line

- All subjects show high correlations between the blood and plasma
- Generally, no discernable pattern emerges even when controlling for sex, race, or ethnicity

Bias (mean of (Serum - Blood)/Serum*100%) as a solid blue line and the lower and upper limits of agreement (LOA) as dashed red lines

© 2022, Bill & Melinda Gates Medical Research Institute. All rights reserved.

Population PK analysis demonstrated that the PK in capillary blood from VAMS and serum samples are comparable

- 2 compartment models with zero-order absorption (for IM) and first-order elimination for both serum and blood data described the data well
- As expected, due to mAb partition to serum, clearance and volume parameters were higher in the blood (by approximately 40%)
- However, a similar half-life was estimated in the blood and serum
- Bioavailability and the rate of absorption are not impacted by the matrix

Parameter [Unites]	Serum	Blood
CL (L/Day)	0.0477	0.0665
V (L)	3.21	4.4
Q (L/Day)	0.688	1.226
Vp (L)	2.18	3.16
D1 (Day)	3.86	4.03
Bioavailability (%)	82.3	81.1
Distribution t _{1/2} (days)	1.29	1.02
Terminal* t _{1/2} (Days)	79.1	79.6

^{*} Terminal half-life is a close approximation of the beta half-life

Conclusions

- A patient-centric sampling strategy using dried blood collected on VAMS technology was successfully implemented for RSM01 in a first-in-human trial with adult participants
- The PK results in capillary blood from VAMS and serum samples were comparable with a high correlation coefficient
- This approach is valuable in advancing global clinical drug development and will be used in future pediatric RSM01 trials in infants

Acknowledgments

- Luisa Stamm (Gates MRI)
- Shayne Watson (Gates MRI)
- Andrijana Radivojevic (IntiGrowth LLC)
- Aurelio Bonavia (Gates MRI)
- Dale Taylor (PPD)
- Trial participants